

ESALQ

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

LEB 332

Conceitos Fundamentais de Mecânica

Prof. Dr. Walter F. Molina Jr Depto de Eng. de Biossistemas 2017

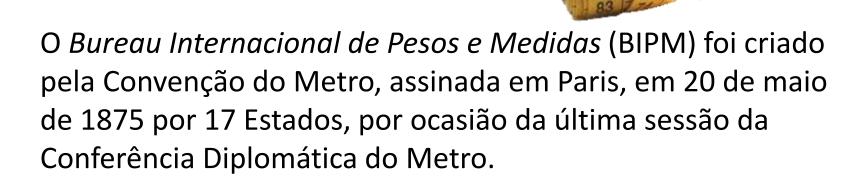
MECÂNICA CLÁSSICA

NEWTONIANA

É a área do conhecimento que estuda os movimentos, a energia e as forças que atuam sobre corpos materiais.

Isaac Newton 1646 - 1727

Estática: Estuda a causa dos movimentos


Cinemática: Estuda os movimentos sem considerar

causas e consequências

Dinâmica: Estuda os movimentos e suas

consequências

SISTEMA DE UNIDADES

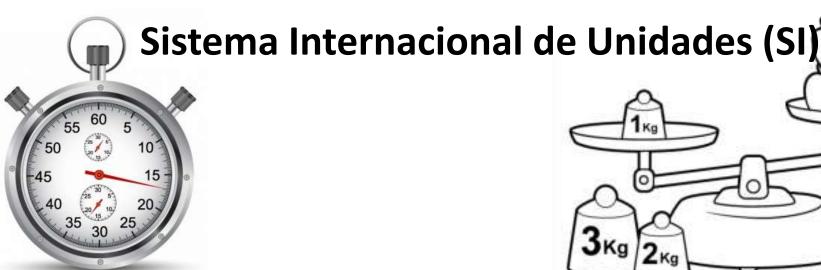


Tabela 1.1 Unidades Sistema Internacional de Base (INMETRO, 2007).

	Unidade de Base		
Grandeza	Nome	Símbolo	Dimensão de Base
Comprimento	metro	m	L
Massa	quilograma	kg	M
Tempo	segundo	S	T
Corrente elétrica	ampère	Α	I
Temperatura termodinâmica	kelvin	K	Θ
Quantidade de matéria	mol	mol	N
Intensidade Iuminosa	candela	cd	J

Tabela 1.2 Unidades Sistema Internacional *Derivadas* (INMETRO, 2007).

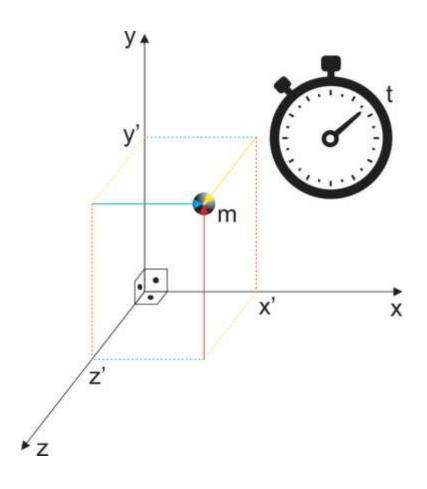

Grandeza	Unidade de Base		
Granueza	Nome	Símbolo	
Superfície	metro quadrado	m ²	
Volume	metro cúbico	m³	
Velocidade	metro por segundo	m/s	
Aceleração	metro por segundo ao quadrado	m/s²	
Número de ondas	metro elevado à potência -1	m ⁻¹	
Massa específica	quilograma por metro cúbico	Kg/m ³	
Volume específico	metro cúbico por quilograma	m³/kg	
Densidade de corrente	ampère por metro quadrado	A/m²	
Campo magnético	ampère por metro	A/m	
Concentração	mol por metro cúbico	mol/m³	
Luminância	candela por metro quadrado	cd/m²	
Índice de refração	o número um	1*	

Tabela 1.4 Fatores, prefixos e símbolos dos múltiplos e submúltiplos das Unidades SI (INMETRO, 2007).

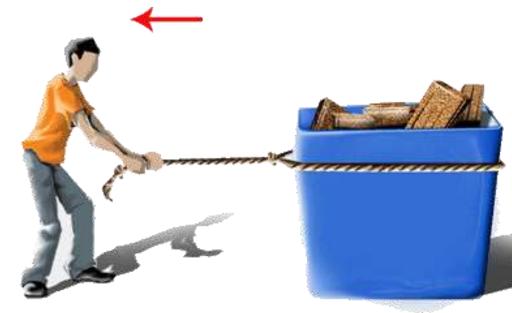
Fator	Prefixo	Símbolo
10 ²⁴	yotta	Υ
10 ²¹	zetta	Z
10 ¹⁸	exa	Е
10 ¹⁵	peta	Р
10 ¹²	tera	Т
10 ⁹	giga	G
10 ⁶	mega	M
10³	kilo	k
10 ²	hecto	h
10¹	deca	da

Fator	Prefixo	Símbolo
10-1	deci	d
10-2	centi	С
10-3	mili	m
10 ⁻⁶	micro	μ
10 -9	nano	n
10-12	pico	р
10 ⁻¹⁵	fento	f
10-18	atto	а
10-21	zepto	Z
10-24	yocto	У

Sistema de Referencial Newtoniano

No instante t o corpo de massa m encontra-se na posição (x', y', z') do referencial inercial

Princípio da Inércia


Todos os corpos permanecem em repouso ou em movimento retilíneo uniforme, a não ser que, sob ação de forças a eles aplicadas, sejam compelidos a mudar seu estado.

Primeira Lei de Newton

Princípio Fundamental

O Que é uma FORÇA?

Quantidade de Movimento

Quantidade de Movimento (Q) é a relação direta entre a massa (m) de um corpo material e sua velocidade de deslocamento (v) num dado referencial.

$$Q = m \cdot v$$

Impulso

Impulso (I) é a variação da quantidade de movimento de uma partícula.

$$I = \Delta Q = Q_f - Q_i$$

Considerando a massa (m) da partícula constante, a sua quantidade de movimento variará de acordo com a velocidade. Então, podemos escrever:

$$Q_i = m \cdot v_i \qquad Q_f = m \cdot v_f$$

$$\Delta Q = m \cdot (v_f - v_i) = m \cdot \Delta v$$

Do estudo dos movimentos (cinemática):

$$s_f = s_i + v_i t + a \frac{t^2}{2}$$
 e...

$$v_f = v_i + at$$
 Portanto...

$$v_f - v_i = \Delta v = at$$

Então, como visto...

$$\Delta Q = m \cdot \Delta v$$
 e... $\Delta v = at$

Temos...

$$\Delta Q = m \cdot a = F \quad \text{e...}$$

$$I = \Delta Q$$

$$I = F \cdot t$$

Princípio Fundamental

A alteração no estado de movimento de um corpo é proporcional à força aplicada à ele e ocorre na mesma direção desta força.

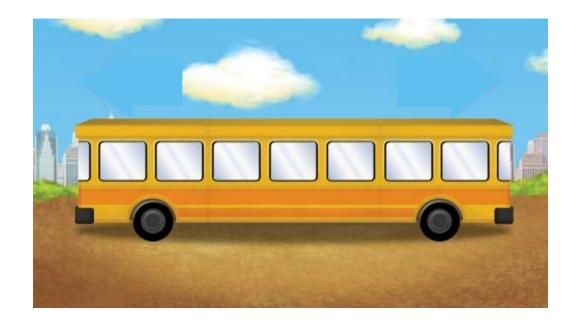
$$F = m \cdot a$$

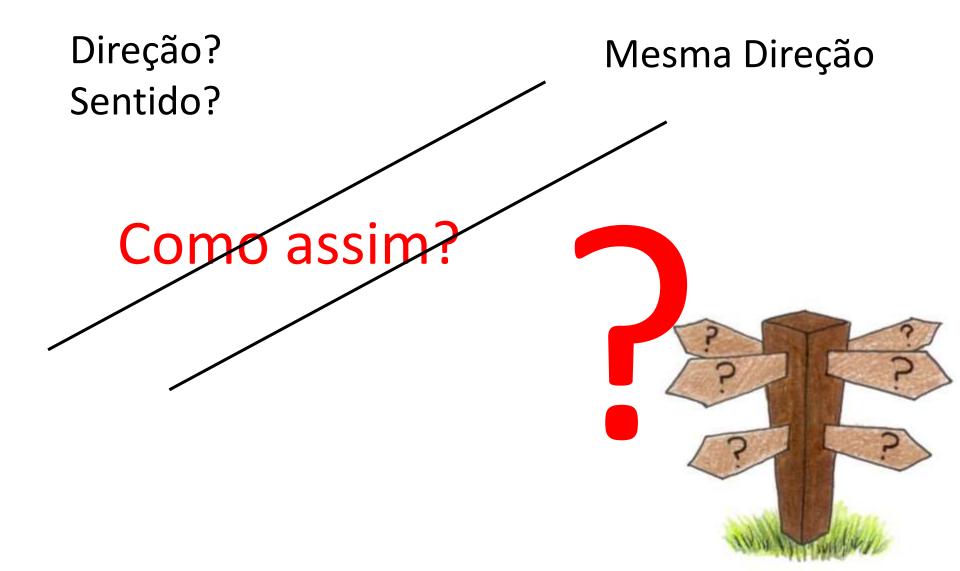
Segunda Lei de Newton

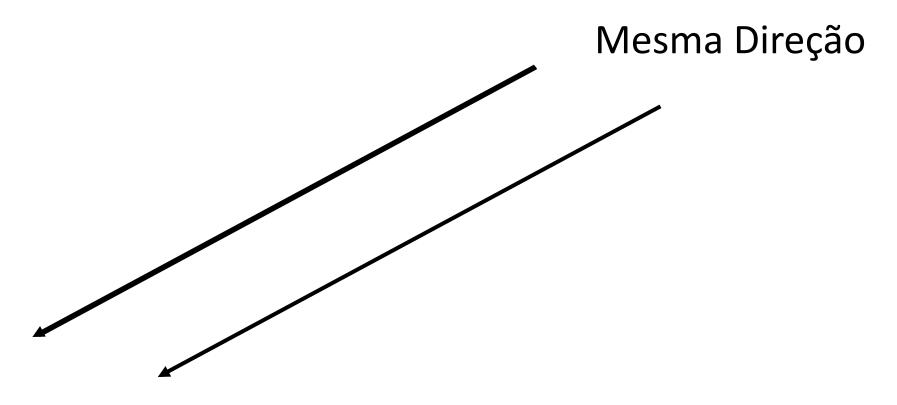
Princípio de Ação e Reação

A cada ação corresponde uma reação de igual intensidade, porém em sentido contrário. Ou seja, a interação entre dois corpos provoca sempre ações mútuas em módulo, em sentidos contrários.

Terceira Lei de Newton




Direção? Sentido?


Grandezas Escalares

Grandezas Vetoriais

Mesmo Sentido

Grandezas Escalares e Vetoriais

Escalares: Explicam-se por si mesmas quando um

número (valor) é expresso a seu

respeito – massa, volume, temperatura.

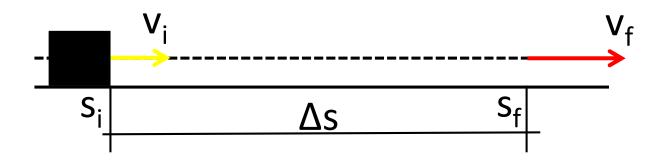
Vetoriais: Necessitam de orientação dentro de

um dado referencial – velocidade,

força, aceleração.

Energia

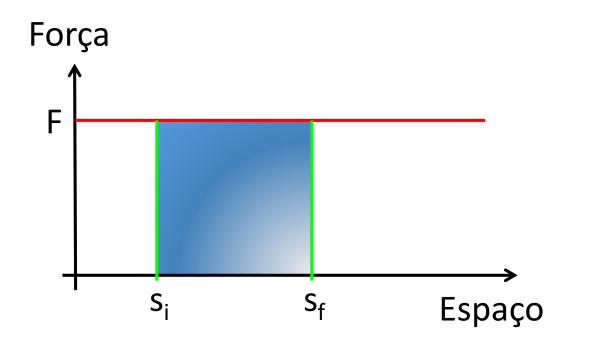
A ENERGIA acumulada num sistema credita-lhe a possibilidade de gerar movimento


ENERGIA CINÉTICA

A ENERGIA CINÉTICA (Ec) pertencente a um sistema é função do movimento de suas partes e está relacionada diretamente com sua massa

$$Ec = \frac{mv^2}{2}$$

TEOREMA DA ENERGIA CINÉTICA


O TRABALHO TOTAL (τ) de todas as forças atuantes num sistema físico é relação direta da variação da Energia Cinética (Ec) deste sistema.

TRABALHO

TRABALHO (τ) é a medida física das transformações na quantidade de energia de um dado sistema.

Num movimento retilíneo seria:

$$F \cdot \Delta s = \tau$$

Do estudo dos movimentos (cinemática):

$$s_f - s_i = \Delta s = v_i t + a \frac{t^2}{2} \qquad \text{e...}$$

$$v_f - v_i = \Delta v = at$$

$$\Delta s = v_i t + \frac{(v_f - v_i)t}{2}$$

$$\Delta s = v_i t + \frac{(v_f - v_i)t}{2}$$

$$\Delta s = t \left(v_i + \frac{v_f - v_i}{2} \right)$$

$$\Delta s = t \left(\frac{v_f + v_i}{2} \right)$$

$$v_f - v_i = at$$

$$t = \frac{v_f - v_i}{a}$$

$$\Delta s = t \left(\frac{v_f + v_i}{2}\right)$$

$$\Delta s = \frac{(v_f + v_i)(v_f - v_i)}{2a} = \frac{v_f^2 - v_i^2}{2a}$$

$$\Delta s = \frac{v_f^2 - v_i^2}{2a}$$

$$v_f^2 = v_i^2 + 2a\Delta s$$

EQUAÇÃO DE TORRICELLI

$$\Delta s = \frac{v_f^2 - v_i^2}{2a}$$

$$\tau = F \cdot \Delta s$$

$$\tau = F \cdot \frac{v_f^2 - v_i^2}{2a}$$

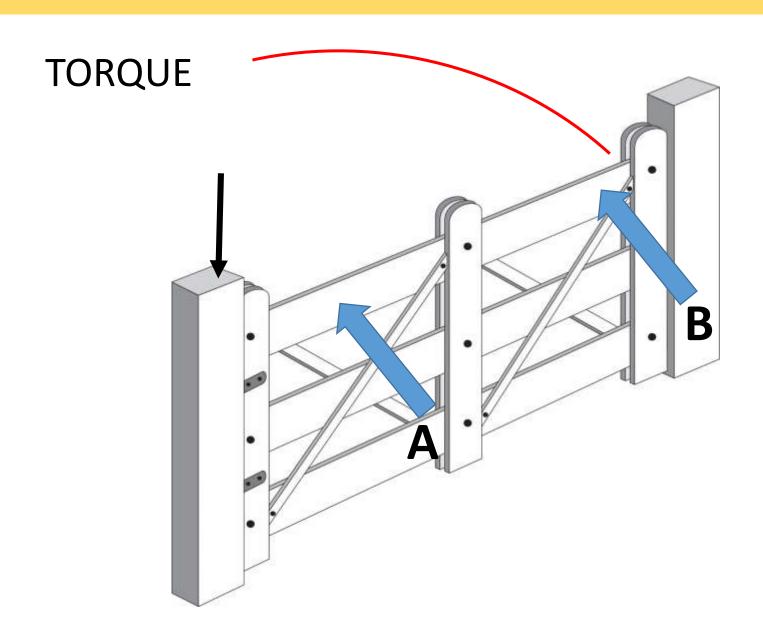
$$\tau = m \cdot \cancel{a} \cdot \frac{v_f^2 - v_i^2}{2\cancel{a}}$$

Velocidade

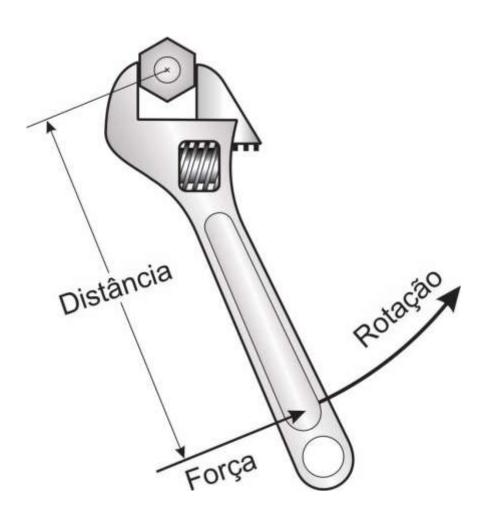
$$\tau = m \cdot \frac{v_f^2 - v_i^2}{2}$$

$$\tau = \frac{mv^2}{2} = E_c$$

POTÊNCIA

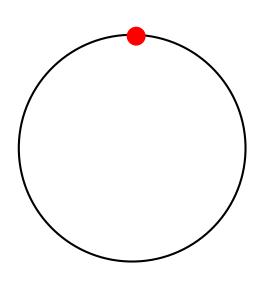

É a razão entre o *trabalho* e o *tempo*. Significa medir com que rapidez uma força (*F*) transforma ou transfere energia

$$P = \frac{\tau}{t} = \frac{F/\Delta s}{t}$$

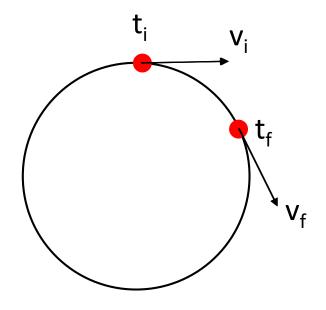

$$P = F \cdot v$$

TORQUE

É uma grandeza vetorial e refere-se à componente perpendicular ao ponto de rotação de uma força aplicada a um objeto que adquire tendência de girar. O ponto de rotação recebe o nome de *polo* ou pivô. A distância entre o polo e o ponto de aplicação da força é conhecida como *braço*.


TORQUE

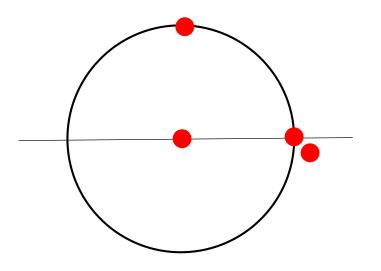
$$T = F \cdot b$$



Movimento Circular Uniforme

Caracteriza-se por sua trajetória ser uma circunferência e o módulo de sua velocidade ser constante.

Movimento Circular Uniforme

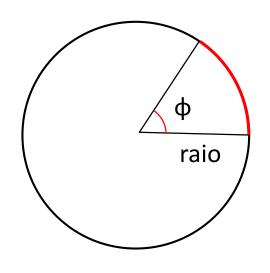


$$\Delta v = v_f - v_i$$

$$\vec{v}_i \quad \vec{v}_f$$

V – Velocidade tangencial

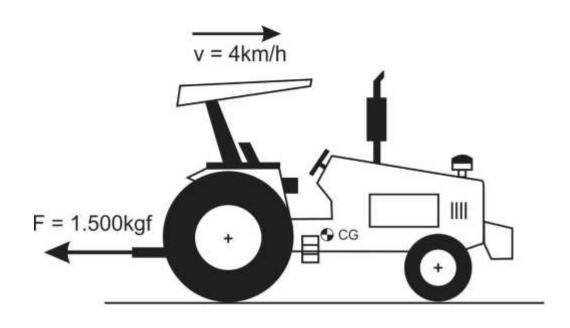
Movimento Circular Uniforme


Período:

Intervalo de tempo decorrido entre as oscilações (uma volta). Normalmente representado por "T". Pode ser entendido como rotação.

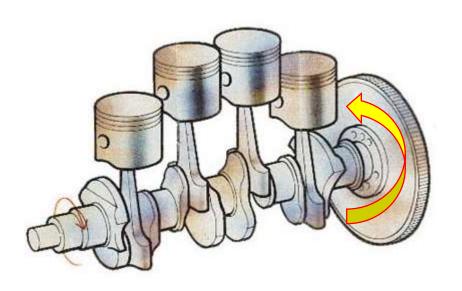
Frequência: Número de oscilações (voltas) na unidade de tempo. É o inverso do

Período -
$$f = \frac{1}{T}$$


Movimento Circular Uniforme

Radiano: é a medida do ângulo central formado pelo arco cujo comprimento é igual ao do raio da circunferência

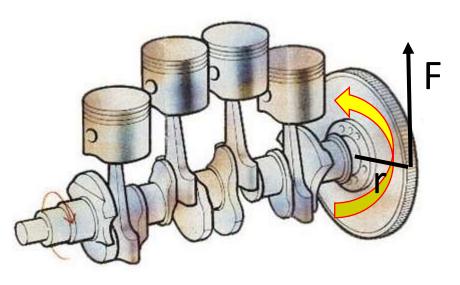
corresponde ao número de vezes que o diâmetro cabe ao longo da circunferência 3,14159265....


Potência no Movimento Circular

$$P = F \cdot v$$

$$P = 1.500 \cdot 4 \cdot \frac{9,8N}{1kgf} \cdot \frac{1000m}{km} \cdot \frac{1h}{3600s} = 16,3kW$$

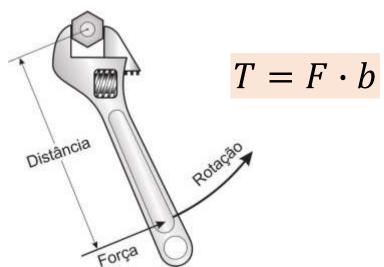
Potência no Movimento Circular

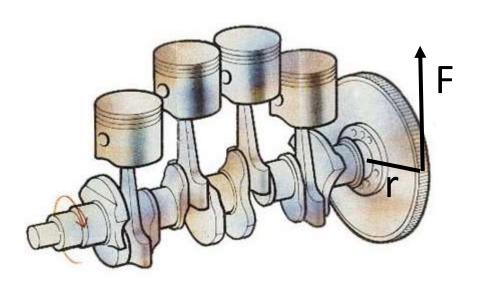

$$P = F \cdot v$$

Velocidade

angular:

corresponde à variação do ângulo descrito por um ponto material ao longo de uma circunferência, num dado intervalo de tempo


Potência no Movimento Circular


$$P = F \cdot \omega \cdot r$$

$$P = F \cdot v$$

$$\omega = \frac{v}{r} \to v = \omega r$$

Potência no Movimento Circular

$$P = F \cdot \omega \cdot r$$

$$F \cdot r = T$$

Uma volta
$$2\pi rad$$
 $2\pi n$

$$P = F \cdot \omega \cdot r$$
 $F \cdot r = T$ $\omega = \frac{2\pi n}{t}$ $\frac{n}{t} = N$

$$P = 2\pi NT$$

Leitura Complementar

MOLINA JR, W.F. & ROMANELLI, T.L. Conceitos fundamentais sobre energia. In: Recursos energéticos e ambiente. Curitiba: Intersaberes, p.21-53. 2015.

MIALHE, L.G. Introdução ao estudo das fontes de potência. In: Máquinas motoras na agricultura. São Paulo: EDUSP, Vol. 1. p.1-51. 1980.

AGUIAR, M.A.M. Tópicos de mecânica clássica. 295p. 2010. Disponível em http://sites.ifi.unicamp.br/aguiar/files/2014/10/top-mec-clas.pdf. Acesso em 18/fev/2016.

Capítulo 1 – Conceitos Fundamentais de Mecânica Clássica – site do DEB – Arquivos de Aula – Prof. Molina