AVALIAÇÃO DO DESEMPENHO DE MOTORES DE COMBUSTÃO INTERNA DE ÊMBOLOS

LEB 466 – Avaliação do Desempenho de Máquinas Agrícolas Depto Engenharia de Biossistemas – ESALQ/USP

Prof. Walter Molina

2013

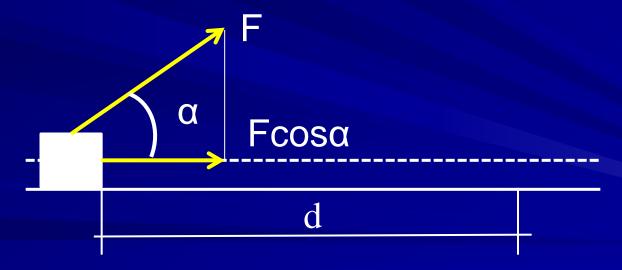
1. INTRODUÇÃO

SISTEMA MOTOMECANIZADO AGRÍCOLA

2. POTÊNCIA MOTORA

✓ Trabalho Mecânico

$$\vec{F} = m \cdot \vec{a}$$


$$\vec{\zeta} = \vec{F} \; . \; \vec{d}$$

2. POTÊNCIA MOTORA

✓ Trabalho Mecânico

$$\vec{\zeta} = \vec{F} \cdot \vec{d} \cdot \cos \alpha$$

2. POTÊNCIA MOTORA

✓ Trabalho Mecânico

$$\vec{F} = m \cdot \vec{a}$$

$$\vec{\zeta} = \vec{F} \cdot \vec{d} \cdot \cos \alpha$$

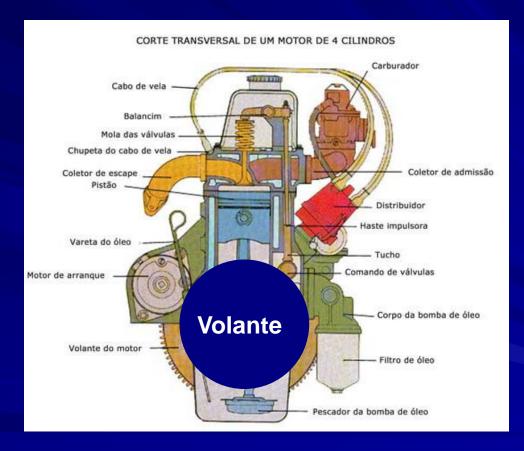
✓ Potência

$$\vec{P} = \frac{\vec{\zeta}}{t} = \vec{F} \cdot (\vec{d}) \cdot \cos \alpha$$

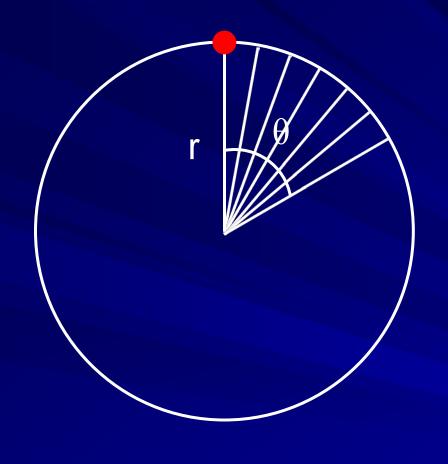
$$\vec{P} = \vec{F} \cdot \vec{v}$$

Relações num Motor de

Cembustão Interna (MCI)

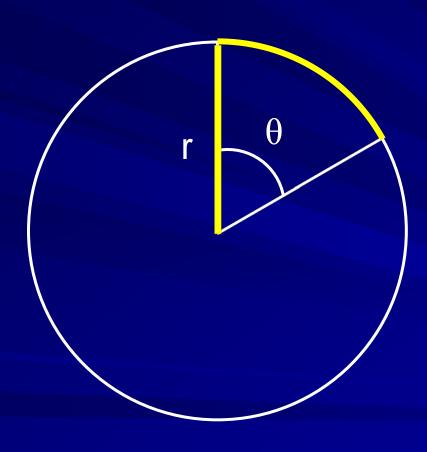


Motor Diesel



Motor Aeromodelo

Relações num Motor de Combustão Interna (MCI)


 $\overrightarrow{P} = \overrightarrow{F} \cdot \overrightarrow{v}$ - Velocidade Angular (ω)

$$C = 2\pi r = \pi D$$

$$A = \pi r^2 = \frac{\pi D^2}{4}$$

RADIANO?

= 1 RADIANO

$$C = 360^0 = 2\pi \text{ rad}$$

$$V = \frac{\Delta s}{\Delta t}$$

$$C = 2\pi r$$
 Distância

$$\omega = \frac{\Delta \theta}{\Delta t}$$

$$C = 2\pi \text{ rad}$$
 Ângulo

$$V = \frac{(2\pi)r}{\Delta t}$$

$$\frac{\omega \Delta t r}{\Delta t}$$

$$\omega = \frac{2\pi}{\Delta t}$$

$$=$$
 $\omega \Delta t$

$$V = \omega r$$

$$V = \omega \cdot r$$
 $\omega = \frac{\Delta \theta}{\Delta t}$

$$C = 2\pi \text{ rad}$$
 1 volta = 1 revolução

$$\Delta\theta = 2\pi (n) \rightarrow n^{\circ} \text{ de revoluções (> 1 ou < 1)}$$

$$\frac{2\pi n}{\Delta t}$$
 N - rotação

$$V = 2\pi Nr$$

$$\vec{V} = (2 \pi N r)$$

$$\vec{P} = \vec{F} \cdot \vec{V}$$

$$\overrightarrow{P} = (F) \cdot 2 \pi \text{ N}(r)$$
Torque - T

 $\vec{P} = 2\pi N\vec{T}$

3. Verificação de Catálogos Comerciais de Fabricantes de Tratores

4. ENSAIO DE MOTORES DE COMBUSTÃO INTERNA DE ÊMBOLOS (MCIE)

4.1 Tipos de MCIE

- a) Qto à forma de ignição:
 - Por centelha (gasolina, álcool, gás)
 - Por compressão (diesel)

- b) Qto ao ciclo:
 - Otto ou
 - Diesel
- c) Qto aos tempos de funcionamento
 - Dois tempos ou
 - Quatro tempos

- d) Qto à forma de admissão
 - Aspiração natural
 - Com turbo-compressores
- e) Qto à utilização
 - Estacionários
 - Veiculares

4.2 Potência de um MCIE

a) Potência Teórica ou Motora

 Implica na transformação total da ξ da combustão em ξ mecânica

b) Potência Indicada

 Calculada ou desenvolvida com base na pressão média dos gases da combustão sobre a área da cabeça do êmbolo. Indica potencial mecânico

c) Potência Efetiva ou ao Freio

• É aquela desenvolvida no volante do motor e medida através de dinamômetros de absorção ou freios dinamométricos

EFETIVA CONTÍNUA NÃO LIMITADA

Maior potência que pode ser fornecida por 24 horas sem desgaste anormal ou perda de desempenho

EFETIVA CONTÍNUA LIMITADA

Maior potência que pode ser fornecida por um tempo limitado ou de forma intermitente

EFETIVA DE SOBRECARGA

Maior potência que pode ser fornecida PECNL, em regime contínuo de 1 hora ou intermitente por 12 horas

EFETIVA MÁXIMA

Maior potência que pode ser fornecida por NO MÍNIMO

15 minutos

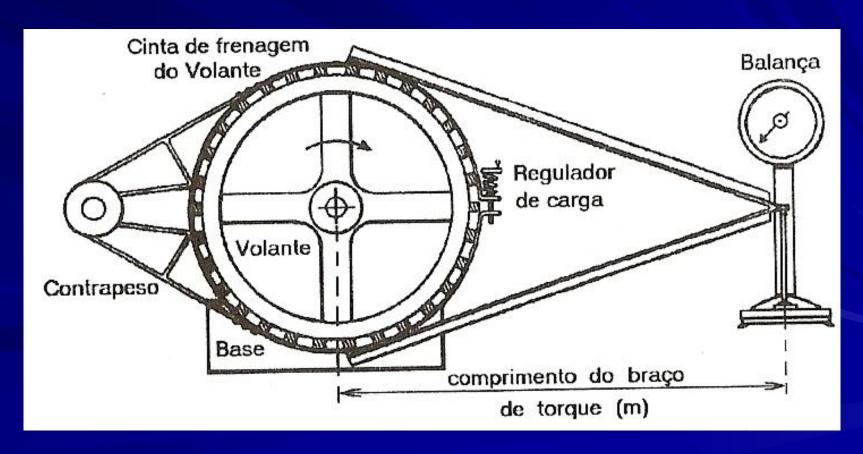
d) Potência de atrito

• É a consumida pelo motor para vencer as resistências de atrito nas suas partes móveis, assim como a aspiração do ar (ou mistura) e expulsão dos gases de escape

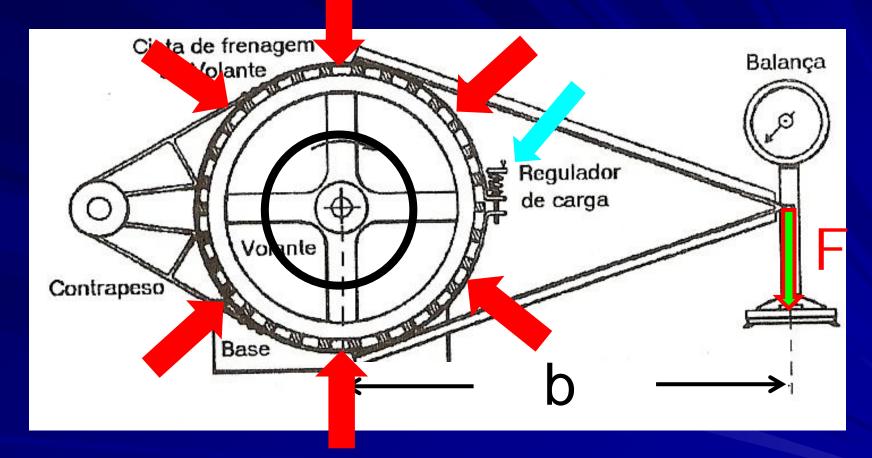
e) Potência reduzida

• É obtida mediante resultados de ensaios, os quais levam em conta as condições atmosféricas em relação às condições padrão (pressões barométrica, parcial de vapor d'água, do ar seco e temperatura ambiente)

4.3 Consumo de Combustível


A mensuração do consumo de combustível e de ar é um dos mais importantes aspectos para a avaliação dos RENDIMENTOS do motor

CONSUMO HORÁRIO – obtido pela leitura direta dos instrumentos que equipam a bancada de ensaio. Pode ser expresso de forma ponderal ou volumétrica


CONSUMO EFETIVO – obtido pela razão entre o consumo horário e a potência desenvolvida na mesma quantidade de tempo.

5. Equipamentos Utilizados nas Determinações

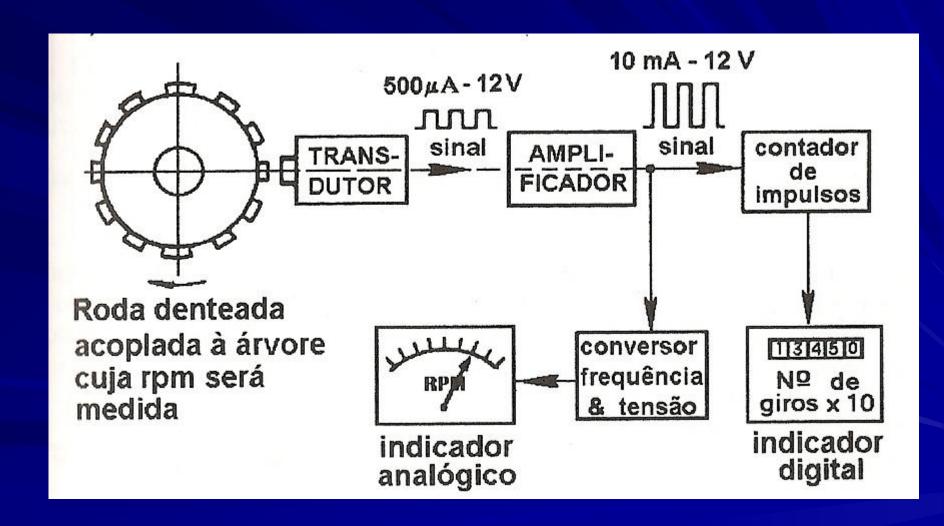
Dinamômetro de Torção

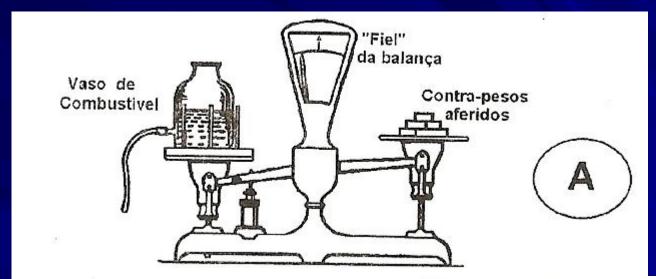
Dinamômetro de Torção

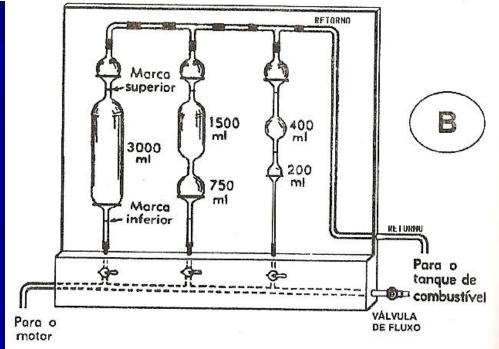
$$\overrightarrow{\mathsf{T}} = \overrightarrow{\mathsf{F}} \cdot \overrightarrow{\mathsf{b}}$$

Bancada

Chassi

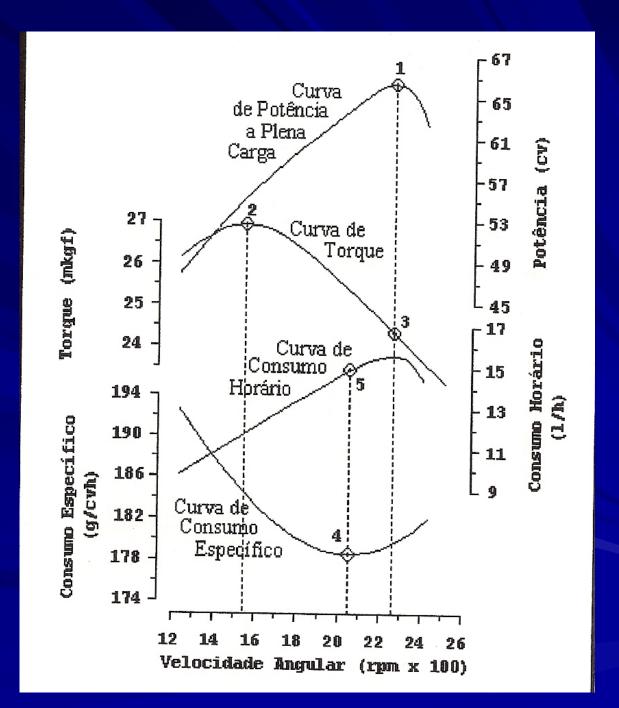



TDP



Medidores de Rotação: Contagiros

Medidores de Combustível


Termômetros

Medições de temperaturas atmosféricas ambientes e de diversos fluidos (água de arrefecimento, óleo lubrificante, combustível, ar de admissão, gás de escape, etc.)

Barômetros

Medição de pressão atmosférica

Resultados dos Ensaios

Video