

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA NEAS – NÚCLEO DE ENGENHARIA DE ÁGUA E SOLO

QUALIDADE DE ÁGUA PARA IRRIGAÇÃO <u>EXERCÍCIOS</u>

- 1. Definir salinidade e sodicidade e os parâmetros para sua determinação (com unidades)
- 2. Explica as razões lógicas do uso da águas de qualidade inferior na agricultura irrigada.
- 3. Quais as conseqüências do processo de salinização do ponto de vista ambiental e econômico?
- 4. Com base na tabela 1, defina o que é uma água de boa qualidade para irrigação.
- 5. Uma análise de água de irrigação apresentou um valor da RAS = 12,1 e uma concentração de NaCl igual a 25,8 mmol.L⁻¹. Qual a concentração de Ca²⁺ + Mg²⁺, o valor de TSD (total de sais dissolvidos em mg.L⁻¹ considerando K⁺ desprezível e Ca²⁺>>Mg²⁺) e da CEa (condutividade elétrica em dS.m⁻¹) da água?
- 6. A análise química de uma água de irrigação dá o resultado seguinte: $Na^+ = 26,1 \text{ mg.L}^-$; $Mg^{2+} = 6,7 \text{ mg.L}^{-1}$; $K^+ = 3,0 \text{ mg.L}^{-1}$; $Cl^- = 11,5 \text{ mg.L}^{-1}$; $HCO_3^- = 198,2 \text{ mg.L}^{-1}$; $NO_3^- = 14,7 \text{ mg.L}^{-1}$.
 - → Converte as unidades e determina a concentração de Ca²⁺ (mg.L⁻¹) através do balanço iônico.
 - → Dá o grau de restrição de uso desta água na irrigação em termo de salinidade e sodicidade (a partir da tabela 1).
- 7. Um solo apresenta a seguinte análise: pH = 9,2; CEa = 2,8 dS m⁻¹; Ca²⁺, Mg²⁺, Na⁺ e K⁺ solúvel igual a 2,3; 0,6; 24,5 e 0,1 meq L⁻¹, respectivamente e CO_3^2 , HCO₃, Cl⁻ e SO_4^2 igual a 3,8; 5,2; 17,2 e 1,8 meq.L⁻¹; H+Al, Ca, Mg, Na e K trocável igual a 17,1; 15,2; 6,5; 8,5 e 2,5 mmol_C.dm⁻³. Calcule:
 - → Verifique a precisão das análises de duas maneiras a partir do cálculo de: 1) R e 2) TSD.
 - → O valor da PST no complexo sortivo do solo e conclui sobre o uso dessa água para irrigar o solo.
- 8. Uma cultura de milho é irrigada com a água descrita no ex.7. A lâmina total é de 560 mm. Calcular a quantidade de sais adicionados ao solo, em t.ha⁻¹. Explique por que nem todos esses sais permanecem no solo.
- 9. Um solo apresenta CEes = 4,0 dS.m⁻¹. Determine a contribuição do potencial osmótico Ψ_O no potencial total do solo, quando este solo encontra-se e capacidade de campo e ponto de murcha permanente, considerando θ_S = 41%; θ_{CC} = 26% e θ_{PM} = 14%. Concluir sobre a importância de Ψ_O na agricultura irrigada com água salina.
- 10. Uma cultura de pimentão é irrigada com água de CEa = 0,7 dS.m⁻¹ durante 300 dias, considerando-se que a lâmina de água necessária à cultura diariamente é de 1,5 mm. Caso objetiva-se um rendimento de 100%, pede-se:
 - → A fração de lixiviação e a lâmina diária necessária para atender a ETc+lixiviação.
 - → A quantidade de sais adicionados no solo (em t.ha⁻¹).

- 11. Quais as principais técnicas de recuperação dos solos afetados por sais?
- 12. Descreva os corretivos utilizados na recuperação de:
 - → solos sódicos?
 - → solos salinos?
 - → solos salinos sódicos?
- 13. Uma água apresenta 146 mg.L⁻¹ de sódio, 8,2 mg.L⁻¹ de cálcio e 8,4 mg.L⁻¹ de magnésio. Qual o valor da RAS e a quantidade de gesso a dissolver para baixar este valor para metade? Fazer o mesmo cálculo com [Ca²⁺] = 82 mg.L⁻¹ e concluir.
- 14. Um solo apresenta condutividade elétrica do extrato de saturação 15 dS.m⁻¹ a 60 cm de profundidade. O lençol freático encontra-se à uma profundidade de 6 m com condutividade elétrica de 4,5 dS.m⁻¹. Sabendo-se que o agricultor dispõe de água de irrigação com CE = 1,5 dS.m⁻¹ para remediar um argissolo:
 - → Qual o método de lavagem mais apropriado neste caso e qual a lâmina de água necessária para baixar a CEes para 5 dS.m⁻¹ (ver fórmula) ?
 - → Quais as culturas que podem ser cultivadas após a recuperação ?
- 15. Um agricultor dispõe de três águas: água de rio (1), água de poço (2) e água residuária (3 efluente de estação de tratamento de esgoto doméstico).
 - A partir das análises dadas na tabela 3, determinar se as águas são sódicas e classificá-las em termo de salinidade e sodicidade. Verificar a coerência das análises químicas, estimar a quantidade de nitrato (NO₃) na água 3 e retificar a sua classificação.
 - 2) Descrever as diferentes misturas de águas (% de cada água) que podem ser realizar para o agricultor irrigar uma plantação de milho (rendimento 100%) e escolher a melhor opção sabendo que [NO₃] na água final deve ser igual ou inferior a 10 mg.L⁻¹.

Tabela 4 – Composição das águas disponíveis para irrigação

	Água de rio (1)	Água de poço (2)	Água residuária (3)
CEa (dS.m ⁻¹)	0,15	3,44	0,69
Ca ²⁺ (meq.L ⁻¹)	0,41	2,65	1,21
Mg ²⁺ (meq.L ⁻¹)	0,21	2,18	0,87
K ⁺ (meq.L ⁻¹)	0,24	1,64	0,63
Cl ⁻ (meq.L ⁻¹)	0,27	8,54	1,78
HCO ₃ (meq.L ⁻¹)	0,92	12,4	2,65
CO ₃ ²⁻ (meq.L ⁻¹)	0,02	10,4	0,32

Tabela 1 – Classificação das águas para irrigação. (Ayers e Westcot, 1991)

		Gr	Grau de Restrição de Uso			
Problema Potencial	Unidades		Ligeira e Moderada			
Salinidade (afeta a disponibilidade de água para as plantas)						
Condutividade Elétrica da água (CEa)	dS.m ⁻¹	< 0,70	0,7-3,0	> 3,0		
Total de sais em Solução (TSD)	mg.L ⁻¹	< 450	450-2000	> 2000		
Sodicidade (afeta a estrutura do solo, notadamente infiltração)						
RAS = 0 - 3		> 1,9	1,2 - 0,3 1,9 - 0,5 2,9 - 1,3	< 0,2 < 0,3 < 0,5 < 1,3 < 2,9		
Toxicidade dos íons específicos (afeta culturas sensíveis)						
Sódio (Na) Irrigação por superfície Irrigação por Aspersão	meq.L ⁻¹ meq.L ⁻¹	< 3 < 3	3,0 - 9,0 > 3	> 9		
Cloreto (CI) Irrigação por superfície Irrigação por Aspersão	meq.L ⁻¹ meq.L ⁻¹	< 4 < 3	4,0 – 10 > 3	> 10		
Boro (B) pH		< 0,7	0,7 - 3,0 6,5 - 8,4	> 3,0		

Tabela 3- Tolerância à salinidade das culturas selecionadas e seu rendimento potencial em função da salinidade do solo ou da água

	Rendimento Potencial									
Culturas	100 % 9		90	%	75 %	50 %	0 %3			
Guituras		CEa	CEes	CEa	CEes	CEa	CEes	CEa	CEes	CEa
EXTENSIVAS										
Cevada (Hordeum vulgare)		5,3	10,0	6,7	13,0	8,7	18,0	12,0	28,0	19,0
Algodoeiro (Gossypium hisutum)	7,7	5,1	9,6	6,4	13,0	8,4	17,0	12,0	27,0	18,0
Beterraba açucareira (Beta vulgaris)		4,7	8,7	5,8	11,0	7,5	15,0	10,0	24,0	16,0
Sorgo (Sorghum bicolor)		4,5	7,4	5,0	8,4	5,6	9,9	6,7	13,0	8,7
Trigo (Triticum aestivum)		4,0	7,4	4,9	9,5	6,3	13,0	8,7	20,0	13,0
Trigo duro (Triticum turgidum)		3,8	7,6	5,0	10,0	6,9	15,0	10,0	24,0	16,0
Soja (Glycine max)		3,3	5,5	3,7	6,3	4,2	7,5	5,0	10,0	6,7
Caupi (Vigna unguiculata)	4,9	3,3	5,7	3,8	7,0	4,7	9,1	6,0	13,0	8,8
Arroz (Oryza sativa)	3,3	2,2	3,8	2,6	5,1	3,4	7,2	4,8	11,0	7,4
Amendoim (Arachis hypogaea)	3,2	2,1	3,5	2,4	4,1	2,7	4,9	3,3	6,6	4,4
Cana-de-açúcar (Saccharum	1,7	1,1	3,4	2,3	5,9	4,0	10,0	6,8	19,0	12,0
officinarum)										
Milho (Zea Mays)	1,7 1,7	1,1	2,5	1,7	3,8	2,5	5,9	3,9	10,0	6,2
Linho (Linum usitatissimum)		1,1	2,5	1,7	3,8	2,5	5,9	3,9	10,0	6,7
Feijão-fava (Vicia faba)		1,1	2,6	1,8	4,2	2,0	6,8	4,5	12,0	8,0
Feijão (Phaseolus vulgaris)	1,0	1,0	1,5	1,0	2,3	1,5	3,6	2,4	6,3	4,2
HORTALIÇAS										
Abrobrinha italiana "Zucchini squash"	4,7	3,1	5,8	3,8	7,4	4,9	10,0	6,7	15,0	10,0
Beterraba (Bela vulgaris)	4,0	2,7	5,1	3,4	6,8	4,5	9,6	6,4	15,0	10,0
Abrobrinha "scallops squash"	3,2	2,1	3,8	2,6	4,8	3,2	6,3	4,2	9,4	6,3
Brócolis (Brassica oleracea botrytis)	2,8	1,9	3,9	2,6	5,5	3,7	8,2	5,5	14,0	9,1
Tomateiro (Lycopersicum esculentum)	2,5	1,7	3,5	2,3	5,0	3,4	7,6	5,0	13,0	8,4
Pepino (Cucumis sativas)	2,5	1,7	3,3	2,2	4,4	2,9	6,3	4,2	10,0	6,8
Espinafre (Spinacia oleracea)	2,0 1,8	1,3	3,3	2,2	5,3	3,5	8,6	5,7	15,0	10,0
Aipo (Apium graveolens)		1,2	3,4	2,3	5,8	3,9	9,9	6,6	18,0	12,0
Repolho (Brassica oleracea botrytis)	1,8 1,7	1,2 1,1	2,8 2,5	1,9	4,4 3,8	2,9 2,5	7,0 5.0	4,6 3,9	12,0 10,0	8,1
Batata (Solanum tuberosum)	1,7	1,1	2,5	1,7	3,8	2,5	5,9 5,9		10,0	6,7
Milho doce (zea mays)	1,7	1,1		1,7		2,5		3,9 4,0	11,0	6,7 7,1
Batata-doce (Ipomea batatas)		1,0	2,4 2,2	1,6 1,5	3,8 3,3	2,3	6,0 5,1	3,4	8,6	7,1 5,8
Pimentão (Capsicum annuum) Alface (Lactuca sativa)	1,5 1,3	0,9	2,2	1,3	3,3	2,2	5,1	3,4	9,0	6,0
Rabanete (Raphanus sativus)	1,3	0,9	2,1	1,3	3,2	2,1	5,0	3,4	9,0 8,9	5,9
Cebola (Allium cepa)	1,2	0,8	1,8	1,2	2,8	1,8	4,3	2,9	7,4	5,0
Cenoura (Daucus carota)		0,8	1,7	1,1	2,8	1,9	4,6	3,0	7, 4 8,1	5,0 5,4
Feijão-de-vagem (Phaseolus vulgaris)		0,7	1,7	1,0	2,3	1,5	3,6	2,4	6,3	4,2
Nabo (Brassica rapa)	1,0 0,9	0,6	2,0	1,3	3,7	2,5	6,5	4,3	12,0	8,0
Habb (Brabbioa rapa)	0,5	5,5	۷,0	٠,٠	0,1	۷,5	0,5	7,0	. 2,0	0,0

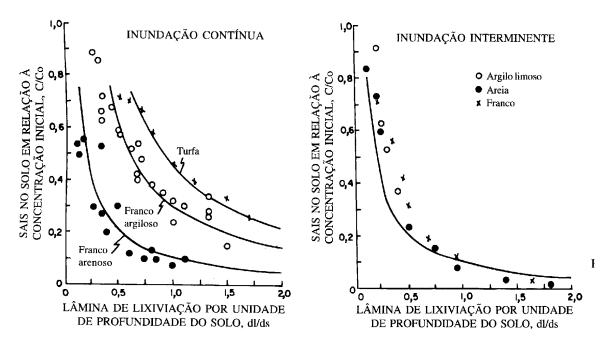


Figura 2 – Lâmina de lixiviação, por unidade de profundidade de solo, necessária para recuperar um solo salino.

FORMÚLAS

Massa atômica: Na: 23 g.mol⁻¹; K: 39,1 g.mol⁻¹; Ca: 40,1 g.mol⁻¹; Mg: 24,3 g.mol⁻¹; Cl: 35,5 g.mol⁻¹; H: 1 g.mol⁻¹; O: 16 g.mol⁻¹; N: 14 g.mol⁻¹; C: 12 g.mol⁻¹; S: 32,1 g.mol⁻¹

TDS = 0.64*CEa

Ψo = -0.36* CEa

$$FL = \frac{CEa}{5 \times CEes - CEa}$$

$$Lirrig(\%) = \frac{100}{1 - FL}$$
 ou $Lirrig(mm) = \frac{ETc}{1 - FL}$

$$\left(\frac{C}{Co}\right) x \left(\frac{Ld}{Ls}\right) = K'$$

C = Concentração de sais que se deseja obter no solo após a lixiviação.

Co = Concentração de sais originalmente presente no solo.

 $\left(\frac{Ld}{Ls}\right)$ = lâmina de água (Ld) através de uma dada profundidade de solo (Ls)

K' = Constante que varia com a textura do solo: 0,35; 0,3 e 0,1 para solos turfosos, franco argilosos e franco arenosos (lavagem continue), ou sempre 0,15 (lavagem intermitente).

RESPOSTAS

```
Ca^{2+} + Mg^{2+} = 4.5 \text{ mmol.L}^{-1}
TDS = 2282 \text{ mg.L}^{-1}
CE = 3.56 \text{ dS.m}^{-1}
Ca^{2+} = 41 \text{ mg.L}^{-1}
Não salina e moderadamente sódica
R=-0,91%; erro na estimativa da TSD pelo CE = 2,45%
Solo sódico → não se pode usar esta água (água moderadamente sódica)
8.
10,04 t/ha
%Ψο c.c. = 87.3% do Ψt
%Ψο p.m. = 24,4% do Ψt
10.
FL = 0.10
L.I. diária = 1,67 \text{ mm}
Total sais adicionados = 2,25 t/ha
13.
CaSO<sub>4</sub> a adicionar:
    1) 225 mg.L<sup>-1</sup>
    2) 977 mg.L<sup>-1</sup>
L_{IAVAGEM} = 270 \text{ mm}
15.
    1) Água 1: não salina, sódica / Água 2: moderadamente salina, moderadamente sódica /
        Água 3: não salina, moderadamente sódica.
```

NO₃⁻ na água 3 = 1,2 meq.L⁻¹ / Concentração de Na⁺ retificada = 3,2 meq.L⁻¹ (em vez de 2,0) → classe de sodicidade não muda.

2) Proporções possíveis: 71/29% (A1/A2) ou 15/85% (A2/A3). Proporção usando o máximo de água 3 (para diminuir impacto no rio): 60/27/14% respectivamente para água A1/A2/A3.